Thrust Measurement of Dielectric Barrier Discharge Plasma Actuators and Power Requirements for Aerodynamic Control
نویسندگان
چکیده
Plasma-based aerodynamic actuators can modify a flow field without the need for moving control surfaces or a source of pressurized air. Actuator power consumption and thrust production were measured for driving frequencies between 1 and 18 kHz, and for driving voltages of 6 and 9 kV peak to peak. The actuator consumed between 3 and 22 W, and produced thrust levels between 0.05 and 0.2 mN per meter span. A comparison of results showed good agreement between this work and previous authors’ results. The actuator effectiveness (thrust produced per watt of power input) was found to range between 0.017 and 0.11 mN/W. The continuous power consumption of a DBD actuator-based control system was then estimated by modeling the actuators as jet flaps. The elevator jet flap strength required to trim a small aircraft in flight was determined. A 0.5 kg aircraft with 0.76 m wing area required between 0.47 and 2.22 kW of power for trim. A 3 kg aircraft with 1.27 m wing area required between 13.6 and 54.6 kW of power for trim. In the most challenging circumstances, flight at stall or max velocity, current battery capacities would allow these aircraft to maintain trimmed flight for only 73 seconds.
منابع مشابه
Plasma Virtual Actuators for Flow Control
Dielectric-barrier-discharge (DBD) plasma actuators are all-electric devices with no moving parts. They are made of a simple construction, consisting only of a pair of electrodes sandwiching a dielectric sheet. When AC voltage is applied, air surrounding the upper electrode is ionized, which is attracted towards the charged dielectric surface to form a wall jet. Control of flow over land and ai...
متن کاملDissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆
In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mecha...
متن کاملSurface Decontamination by Dielectric Barrier Discharge Plasma
Background: Dielectric barrier discharge (DBD), a source of non-thermal plasma, is used in surface decontamination. Objective: To study the effect of DBD plasma treatment, we evaluated the effect of plasma exposure time on inactivation of Bacillus subtilis. Results: Applying the DBD plasma to the culture of B. subtilis caused complete sterilization of the surface without any thermal effects. In...
متن کاملAerodynamic Control Using Windward-Surface Plasma Actuators on a Separation Ramp
Wind-tunnel experimentswere conducted on a 47-deg sweep, scaled 1303unmanned air vehiclemodel to assess the performance of an innovative windward-surface plasma actuator design for flight control at low angles of attack. Control was implemented by altering the flow past an aft separation ramp on the windward side using a single dielectric barrier discharge plasma actuator. The influence of ramp...
متن کاملپالایش بخارات کلروفرم با استفاده از راکتور پلاسمای غیر حرارتی جدید (سال 1394)
Background and aims: One of the innovative technologies for air pollution control is non-thermal plasma. The dielectric barrier discharge reactor is one of the reactors that applied in non thermal plasma technology for air polluation control. In dielectric barrier discharge reactor, the distance between the electrodes for electric discharge is low and led to increasing space velocity of the pol...
متن کامل